SUMMARY REPORT 21 BARRACUDA DRIVE (FORMERLY 900 BARRACUDA DRIVE) LAUREL BAY MILITARY HOUSING AREA MARINE CORPS AIR STATION BEAUFORT BEAUFORT, SC

> Revision: 0 Prepared for:

Department of the Navy Naval Facilities Engineering Command, Mid-Atlantic 9324 Virginia Avenue Norfolk, Virginia 23511-3095

and

Naval Facilities Engineering Command Atlantic 9324 Virginia Avenue Norfolk, Virginia 23511-3095

JUNE 2021

SUMMARY REPORT 21 BARRACUDA DRIVE (FORMERLY 900 BARRACUDA DRIVE) LAUREL BAY MILITARY HOUSING AREA MARINE CORPS AIR STATION BEAUFORT BEAUFORT, SC

> Revision: 0 Prepared for:

Department of the Navy Naval Facilities Engineering Command, Mid- Atlantic 9324 Virginia Avenue Norfolk, Virginia 23511-3095

and

Naval Facilities Engineering Command Atlantic

9324 Virginia Avenue Norfolk, Virginia 23511-3095 Prepared by:

CDM - AECOM Multimedia Joint Venture 10560 Arrowhead Drive, Suite 500 Fairfax, Virginia 22030

Contract Number: N62470-14-D-9016 CTO WE52 JUNE 2021

Table of Contents

1.0	INTRODUCTION	. 1
1.1 1.2	Background Information UST Removal and Assessment Process	
2.0	SAMPLING ACTIVITIES AND RESULTS	. 3
2.1 2.2	UST REMOVAL AND SOIL SAMPLING Soil Analytical Results	
3.0	PROPERTY STATUS	. 4
4.0	REFERENCES	. 4

Table

Table 1	Laboratory	Analytical	Results - Soil
	Laboratory	ranaryticar	Results Soll

Appendices

- Appendix A Multi-Media Selection Process for LBMH
- Appendix B UST Assesment Report
- Appendix C Regulatory Correspondence

List of Acronyms

bgs	below ground surface
BTEX	benzene, toluene, ethylbenzene, and xylenes
СТО	Contract Task Order
COPC	constituents of potential concern
IDIQ	Indefinite Delivery, Indefinite Quantity
IGWA	Initial Groundwater Assessment
JV	Joint Venture
LBMH	Laurel Bay Military Housing
MCAS	Marine Corps Air Station
NAVFAC Mid-Lant	Naval Facilities Engineering Command Mid-Atlantic
NFA	No Further Action
PAH	polynuclear aromatic hydrocarbon
QAPP	Quality Assurance Program Plan
RBSL	risk-based screening level
SCDHEC	South Carolina Department of Health and Environmental Control
Site	LBMH area at MCAS Beaufort, South Carolina
UST	underground storage tank
VISL	vapor intrusion screening level

1.0 INTRODUCTION

The CDM - AECOM Multimedia Joint Venture (JV) was contracted by the Naval Facilities Engineering Command, Mid-Atlantic (NAVFAC Mid-Lant) to provide reporting services for the heating oil underground storage tanks (USTs) located in Laurel Bay Military Housing (LBMH) area at the Marine Corps Air Station (MCAS) Beaufort, South Carolina (Site). This work has been awarded under Contract Task Order (CTO) WE52 of the Indefinite Delivery, Indefinite Quantity (IDIQ) Multimedia Environmental Compliance Contract (Contract No. N62470-14-D-9016).

As of January 2014, the LBMH addresses were re-numbered to comply with the E-911 emergency response addressing system; however, in order to remain consistent with historical sampling and reporting for LBMH area, the residences will continue to be referenced with their original address numbers in sample nomenclature and reporting documents.

This report summarizes the results the environmental investigation activities associated with the storage of home heating oil and the potential release of petroleum constituents at the referenced property. Based on the results of the investigation, a No Further Action (NFA) determination has been made by the South Carolina Department of Health and Environmental Control (SCDHEC) for 21 Barracuda Drive (Formerly 900 Barracuda Drive). This NFA determination indicates that there are no unacceptable risks to human health or the environment for the petroleum constituents associated with the home heating oil USTs. The following information is included in this report:

- Background information;
- Sampling activities and results; and
- A determination of the property status.

1.1 Background Information

The LBMH area is located approximately 3.5 miles west of MCAS Beaufort. The area is approximately 970 acres in size and serves as an enlisted and officer family housing area. The area is configured with single family and duplex residential structures, and includes recreation, open space, and community facilities. The community includes approximately 1,300 housing units, including legacy Capehart style homes and newer duplex style homes. The housing area

is bordered on the west by salt marshes and the Broad River, and to the north, east and south by uplands. Forested areas lie along the northern and northeastern borders.

Capehart style homes within the LBMH area were formerly heated using heating oil stored in USTs at each residence. There were 1,100 Capehart style housing units in the LBMH area. The newer duplex homes within the LBMH area never utilized heating oil tanks. Heating oil has not been used at Laurel Bay since the mid-1980s. As was the accepted practice at the time, USTs were drained, filled with dirt, capped, and left in place when they were removed from service. Residential USTs are not regulated in the State of South Carolina (i.e., there are no federal or state laws governing installation, management, or removal).

In 2007, MCAS Beaufort began a voluntary program to remove the unregulated, residential USTs and conduct sampling activities to determine if, and to what extent, petroleum constituents may have impacted the surrounding environment. MCAS Beaufort coordinated with SCDHEC to develop removal procedures that were consistent with procedural requirements for regulated USTs. All tank removal activities and follow-on actions are conducted in coordination with SCDHEC. To date, all known USTs have been removed from all residential properties within the LBMH area.

1.2 UST Removal and Assessment Process

During the UST removal process, a soil sample was collected from beneath the UST excavations (approximately 4 to 6 feet [ft] below ground surface [bgs]) and analyzed for a predetermined list of constituents of potential concern (COPCs) associated with the petroleum compounds found in home heating oil. These COPCs, derived from the *Quality Assurance Program Plan (QAPP) for the Underground Storage Tank Management Division, Revision 3.1* (SCDHEC, 2016) and the *Underground Storage Tank Assessment Instructions for Permanent Closure and Change-In-Service,* (SCDHEC, 2018), are as follows:

- benzene, toluene, ethylbenzene, and xylenes (BTEX),
- naphthalene, and
- five select polynuclear aromatic hydrocarbon (PAHs): benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene and dibenz(a,h)anthracene.

Soil sample results were submitted by MCAS Beaufort to SCDHEC utilizing SCDHEC's UST Assessment Report form. In accordance with SCDHEC's *QAPP for the UST Management*

Summary Report 21 Barracuda Drive (Formerly 900 Barracuda Drive) Laurel Bay Military Housing Area, Marine Corps Air Station Beaufort June 2021

Division (SCDHEC, 2016), the soil screening levels consists of SCDHEC risk-based screening levels (RBSLs). It should be noted that the RBSLs for select PAHs were revised in Revision 2.0 of the QAPP (SCDHEC, 2013) and were revised again in Revision 3.0 (SCDHEC, 2015). The screening levels used for evaluation at each site were those levels that were in effect at the time of reporting and review by SCDHEC.

The results of the soil sampling at each former UST location were used to determine if a potential for groundwater contamination exists (i.e., soil results greater than RBSLs) and subsequently to select properties for follow-up initial groundwater assessment (IGWA) sampling. The results of the IGWA sampling (if necessary) are used to determine the presence or absence of the aforementioned COPCs in groundwater and identify whether former UST locations will require additional delineation of COPCs in groundwater. In order to delineate the extent of impact to groundwater, permanent wells are installed and a sampling program is established for those former UST locations where IGWA sampling has indicated the presence of COPCs in excess of the SCDHEC RBSLs for groundwater. Groundwater analytical results are also compared to the site specific groundwater vapor intrusion screening levels (VISLs) to evaluate the potential for vapor intrusion and the necessity for an investigation associated with this media. A multi-media investigation selection process tree, applicable to the LBMH UST investigations, is presented as Appendix A.

2.0 SAMPLING ACTIVITIES AND RESULTS

The following section presents the sampling activities and associated results for 21 Barracuda Drive (Formerly 900 Barracuda Drive). Details regarding the soil investigation at this site are provided in the *SCDHEC UST Assessment Report – 900 Barracuda Drive* (MCAS Beaufort, 2012). The UST Assessment Report is provided in Appendix B.

2.1 UST Removal and Soil Sampling

On May 24, 2012, a single 280 gallon heating oil UST was removed from the back yard under the patio area at 21 Barracuda Drive (Formerly 900 Barracuda Drive). The former UST location is indicated on Figures 2 and 3 of the UST Assessment Report (Appendix B). The UST was removed and properly disposed of (i.e., shipped offsite for recycling or transported to a landfill). There was no visual evidence (i.e., staining or sheen) of petroleum impact at the time of the UST removal. According to the UST Assessment Report (Appendix B), the depth to the base of

the UST was 5'10" bgs and a single soil sample was collected from that depth. The sample was collected from the fill port side of the former UST to represent a worst case scenario.

Following UST removal, a soil sample was collected from the base of the excavation and shipped to an offsite laboratory for analysis of the petroleum COPCs. Sampling was performed in accordance with applicable South Carolina regulation R.61-92, Part 280 (SCDHEC, 2017) and assessment guidelines.

2.2 Soil Analytical Results

A summary of the laboratory analytical results and SCDHEC RBSLs is presented in Table 1. A copy of the laboratory analytical data report is included in the UST Assessment Report presented in Appendix B. The laboratory analytical data report includes the soil results for the additional PAHs that were analyzed, but do not have associated RBSLs.

The soil sample results were submitted by MCAS Beaufort to SCDHEC utilizing SCDHEC's UST Assessment Report form (Appendix B). The results of the soil sampling at the former UST location were used by MCAS Beaufort, in consultation with SCDHEC, to determine a path forward (i.e., additional sampling or NFA) for the property. The soil results collected from 21 Barracuda Drive (Formerly 900 Barracuda Drive) were less than the SCDHEC RBSLs, which indicated the subsurface was not impacted by COPCs associated with the former UST at concentrations that presented a potential risk to human health and the environment.

3.0 PROPERTY STATUS

Based on the analytical results for soil, SCDHEC made the determination that NFA was required for 21 Barracuda Drive (Formerly 900 Barracuda Drive). This NFA determination was obtained in a letter dated May 15, 2014. SCDHEC's NFA letter is provided in Appendix C.

4.0 REFERENCES

- Marine Corps Air Station Beaufort, 2012. South Carolina Department of Health and Environmental Control (SCDHEC) Underground Storage Tank Assessment Report – 900 Barracuda Drive, Laurel Bay Military Housing Area, October 2012.
- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2013. *Quality Assurance Program Plan for the Underground Storage Tank Management* Division, *Revision 2.0*, April 2013.

- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2015. *Quality Assurance Program Plan for the Underground Storage Tank Management* Division, *Revision 3.0*, May 2015.
- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2016. *Quality Assurance Program Plan for the Underground Storage Tank Management* Division, *Revision 3.1*, February 2016.
- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2017. *R.61-92, Part 280, Underground Storage Tank Control Regulations*, March 2017.
- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2018. Underground Storage Tank Assessment Instructions for Permanent Closure and Change-In-Service, March 2018.

Table

Table 1Laboratory Analytical Results - Soil21 Barracuda Drive (Formerly 900 Barracuda Drive)Laurel Bay Military Housing AreaMarine Corps Air Station BeaufortBeaufort, South Carolina

Constituent	SCDHEC RBSLs ⁽¹⁾	Results Sample Collected 05/24/12					
Volatile Organic Compounds Analyzed	Volatile Organic Compounds Analyzed by EPA Method 8260B (mg/kg)						
Benzene	0.003	ND					
Ethylbenzene	1.15	ND					
Naphthalene	0.036	ND					
Toluene	0.627	ND					
Xylenes, Total	13.01	ND					
Semivolatile Organic Compounds Analyzed by EPA Method 8270D (mg/kg)							
Benzo(a)anthracene	0.66	ND					
Benzo(b)fluoranthene	0.66	ND					
Benzo(k)fluoranthene	0.66	ND					
Chrysene	0.66	ND					
Dibenz(a,h)anthracene	0.66	ND					

Notes:

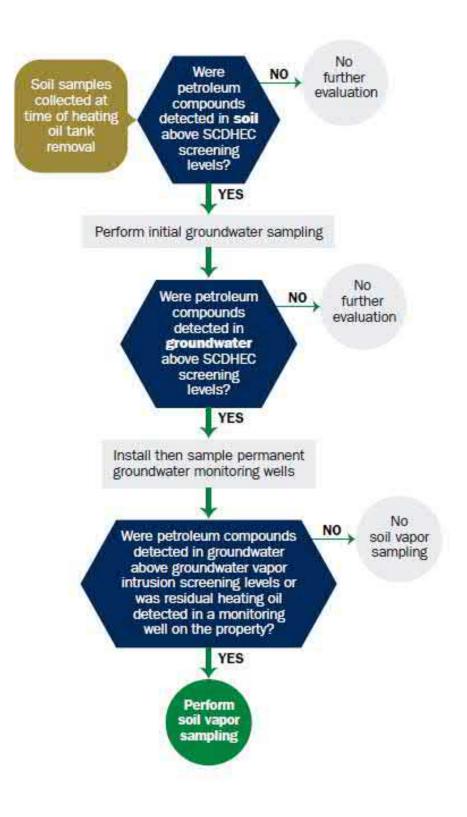
⁽¹⁾ South Carolina Risk-Based Screening Levels from the Quality Assurance Program Plan for the Underground Storage Tank Management Division, Revision 2.0 (SCDHEC, April 2013).

Bold font indicates the analyte was detected.

Bold font and shading indicates the concentration exceeds the SCDHEC RBSL.

EPA - United States Environmental Protection Agency

mg/kg - milligram per kilogram


ND - not detected at the reporting limit (or method detection limit if shown on the laboratory report). The laboratory report is provided in Appendix B.

RBSL - Risk-Based Screening Level

SCDHEC - South Carolina Department Of Health and Environmental Control

Appendix A Multi-Media Selection Process for LBMH

Appendix A - Multi-Media Selection Process for LBMH

Appendix B UST Assessment Report

10/16/12

Attachment 1

South Carolina Department of Health and Environmental Control (SCDHEC) Underground Storage Tank (UST) Assessment Report

Submit Completed Form To: UST Program SCDHEC 2600 Bull Street Columbia, South Carolina 29201 Telephone (803) 896-7957

I. OWNERSHIP OF UST (S)

	Commanding Officer Attn: NR						
Owner Name (Corporation, Individual, Public Agency, Other)							
P.O. Box 55001							
Mailing Address							
Beaufort,	South Carolina	29904-5001					
City	State	Zip Code					
843	228-7317	Craig Ehde					
Area Code	Telephone Number	Contact Person					

II. SITE IDENTIFICATION AND LOCATION

Permit I.D. # Laurel Bay Milita Facility Name or Compan		ne Corps Air Station, Beaufort	c, SC
900 Barracuda St Street Address or State Ro	reet, Laurel Bay Milita ad (as applicable)	ary Housing Area	
Beaufort,	Beaufort County		
		Attachment 2	

III. INSURANCE INFORMATION

Insurance Statement

The petroleum release reported to DHEC on ______ at Permit ID Number _____ may qualify to receive state monies to pay for appropriate site rehabilitation activities. Before participation is allowed in the State Clean-up fund, written confirmation of the existence or non-existence of an environmental insurance policy is required. **This section must be completed.**

Is there now, or has there ever been an insurance policy or other financial mechanism that covers this UST release? YES____ NO____ (check one)

If you answered **YES** to the above question, please complete the following information:

My policy provider is: ______ The policy deductible is: ______ The policy limit is: ______

If you have this type of insurance, please include a copy of the policy with this report.

IV. REQUEST FOR SUPERB FUNDING

I DO / DO NOT wish to participate in the SUPERB Program. (Circle one.)

V. CERTIFICATION (To be signed by the UST owner)

I certify that I have personally examined and am familiar with the information submitted in this and all attached documents; and that based on my inquiry of those individuals responsible for obtaining this information, I believe that the submitted information is true, accurate, and complete.

Name (Type or print.)

Signature

To be completed by Notary Public:

Sworn before me this _____ day of _____, 20____

(Name)

Notary Public for the state of ______. Please affix State seal if you are commissioned outside South Carolina

VI. UST INFORMATION

M. Method of disposal for any USTs removed from the ground (attach disposal manifests) UST 900Barracuda was removed from the ground and disposed at a Subtitle "D" landfill. See Attachment "A".

N. Method of disposal for any liquid petroleum, sludges, or wastewaters removed from the USTs (attach disposal manifests) UST 900Barracuda had been previously filled with sand by others.

O. If any corrosion, pitting, or holes were observed, describe the location and extent for each UST Corrosion and pitting were found throughout the tank.

VII. PIPING INFORMATION

		900Barracuda
		Steel
A.	Construction Material(ex. Steel, FRP)	& Copper
B.	Distance from UST to Dispenser	N/A
C.	Number of Dispensers	N/A
D.	Type of System Pressure or Suction	Suction
E.	Was Piping Removed from the Ground? Y/N	Yes
F.	Visible Corrosion or Pitting Y/N	Yes
G.	Visible Holes Y/N	No
H.	Age	Late 1950s
т	If any compasion mitting on holes were charged de	and the deal and in the stand for and the initial second

I. If any corrosion, pitting, or holes were observed, describe the location and extent for each piping run.

Corrosion and pitting were found on the surface of the steel vent pipe. Copper supply and return lines were sound.

VIII. BRIEF SITE DESCRIPTION AND HISTORY

The USTs at the residence	es are constructed of	single wall steel
and formerly contained fu	el oil for heating.	These USTs were
installed in the late 195	50s and last used in	the mid 1980s.

.

•

	Yes	No	Unk
A. Were any petroleum-stained or contaminated soils found in the UST excavation, soil borings, trenches, or monitoring wells?If yes, indicate depth and location on the site map.		х	
If yes, indicate depth and location on the site map.			
B. Were any petroleum odors detected in the excavation, soil borings, trenches, or monitoring wells?		х	
If yes, indicate location on site map and describe the odor (strong, mild, etc.)			
C. Was water present in the UST excavation, soil borings, or trenches?		х	
If yes, how far below land surface (indicate location and depth)?			
D. Did contaminated soils remain stockpiled on site after closure?		х	
If yes, indicate the stockpile location on the site map.			
Name of DHEC representative authorizing soil removal:			
E. Was a petroleum sheen or free product detected on any excavation or boring waters?		х	
If yes, indicate location and thickness.			

.

X. SAMPLE INFORMATION

A. SCDHEC Lab Certification Number 84009

Β.

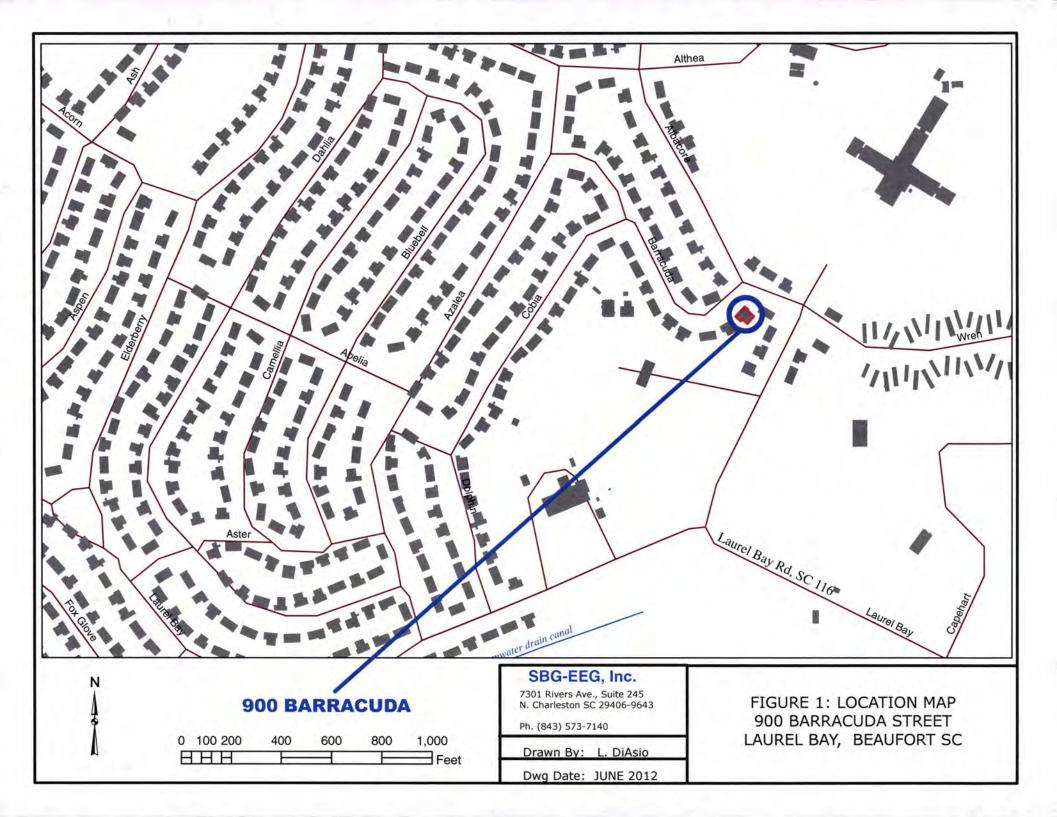
Sample #	Location	Sample Type (Soil/Water)	Soil Type (Sand/Clay)	Depth*	Date/Time of Collection	Collected by	OVA #
900Bar- racuda	Excav at fill end	Soil	Sandy	5'10"	5/24/12 1345 hrs	P. Shaw	
Lucudu	LTIT GUO	5011	Sundy		1919 1110	F. Sllaw	
8						· · · · · · · · · · · · ·	
9							
10							
11							
12							
13							
14							
15							
16							
17							
18							
19							
20							

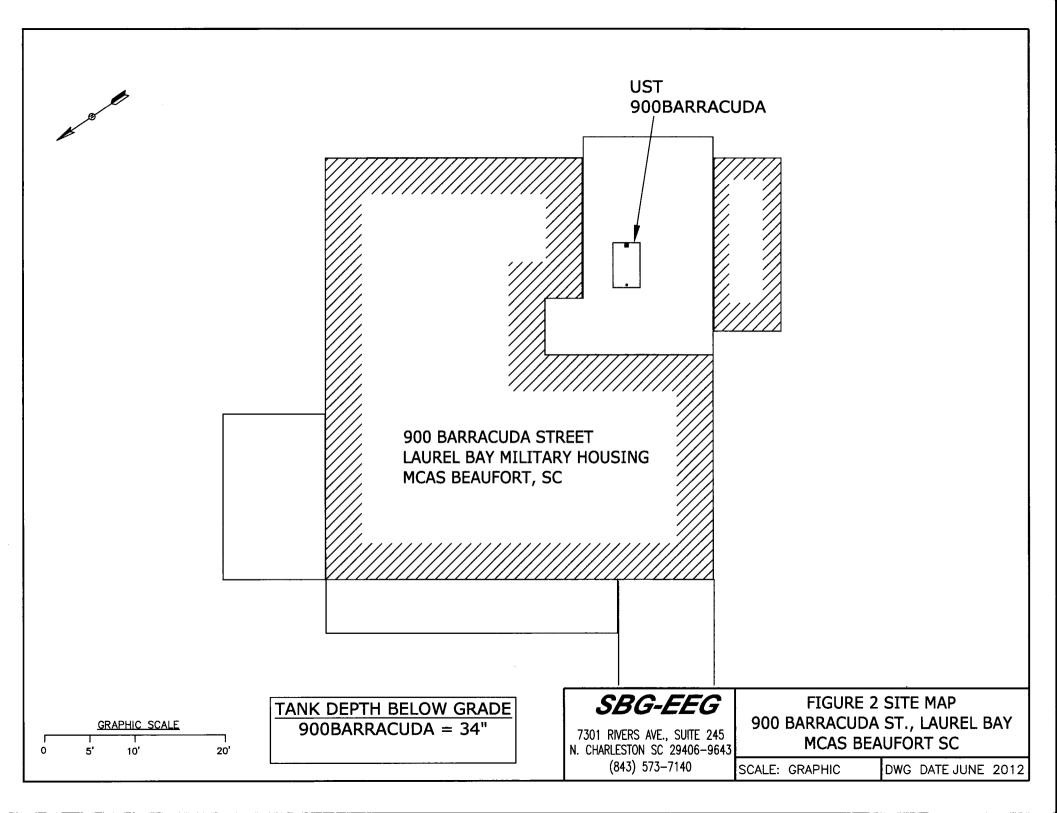
* = Depth Below the Surrounding Land Surface

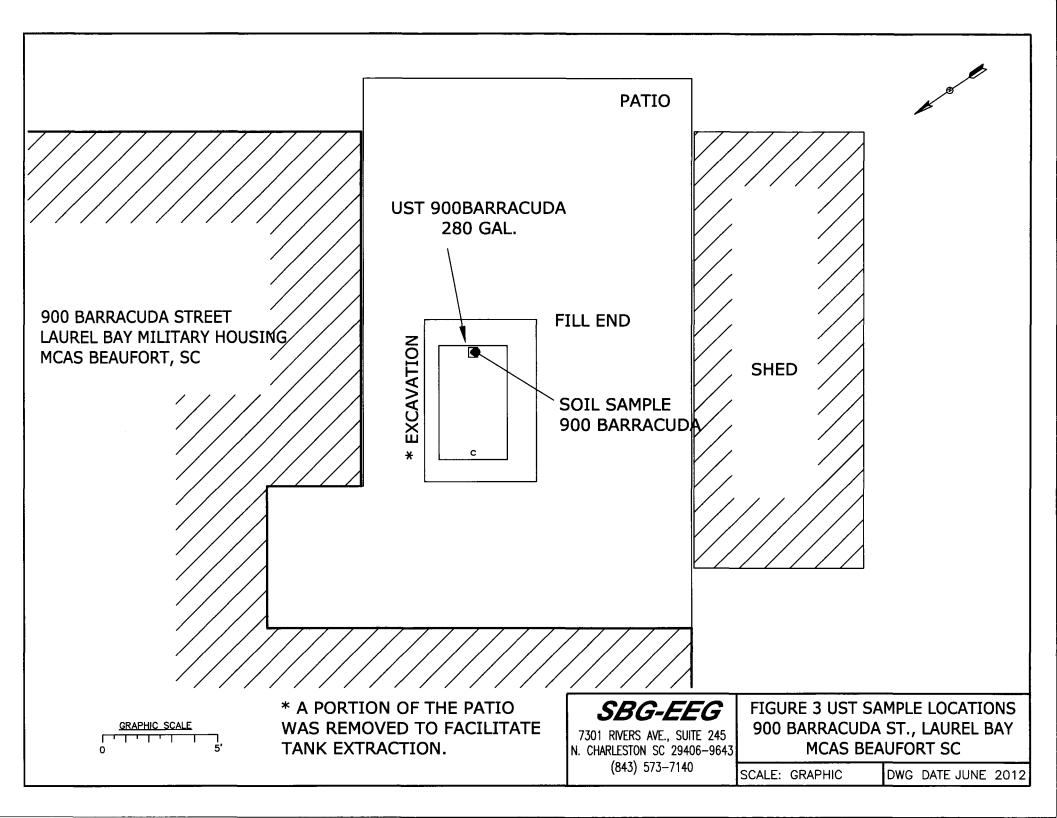
XI. SAMPLING METHODOLOGY

Provide a detailed description of the methods used to collect <u>and</u> store the samples. Also include the preservative used for each sample. Please use the space provided below.

Sampling was performed in accordance with SC DHEC R.61-92 Part 280 and SC DHEC Assessment Guidelines. Sample containers were prepared by the testing laboratory. The grab method was utilized to fill the sample containers leaving as little head space as possible and immediately capped. Soil samples were extracted from area below tank. The samples were marked, logged, and immediately placed in a sample cooler packed with ice to maintain an approximate temperature of 4 degrees Centigrade. Tools were thoroughly cleaned and decontaminated with the seven step decon process after each use. The samples remained in custody of SBG-EEG, Inc. until they were transferred to Test America Incorporated for analysis as documented in the Chain of Custody Record.


XII. RECEPTORS


		Yes	No
A.	Are there any lakes, ponds, streams, or wetlands located within 1000 feet of the UST system?		х
	If yes, indicate type of receptor, distance, and direction on site map.		
B.	Are there any public, private, or irrigation water supply wells within 1000 feet of the UST system?		х
	If yes, indicate type of well, distance, and direction on site map.		
C.	Are there any underground structures (e.g., basements) Located within 100 feet of the UST system?		х
	If yes, indicate type of structure, distance, and direction on site map.		
D.	Are there any underground utilities (e.g., telephone, electricity, gas, water, sewer, storm drain) located within 100 feet of the UST system that could potentially come in contact with the	*X	
	contamination? *Sewer, water, electr	icity	,
	cable & fiber optic If yes, indicate the type of utility, distance, and direction on the site map.		
E.	Has contaminated soil been identified at a depth less than 3 feet below land surface in an area that is not capped by asphalt or concrete?		x
	If yes, indicate the area of contaminated soil on the site map.		


XIII. SITE MAP

You must supply a <u>scaled</u> site map. It should include all buildings, road names, utilities, tank and dispenser island locations, labeled sample locations, extent of excavation, and any other pertinent information.

(Attach Site Map Here)

Picture 1: Location of UST 900Barracuda.

Picture 2: UST 900Barracuda excavation.

XIV. SUMMARY OF ANALYSIS RESULTS

Enter the soil analytical data for each soil boring for all COC in the table below and on the following page.

·····		 	 	
CoC UST	900Barracuda	 		
Benzene	ND			
Toluene	ND			
Ethylbenzene	ND			
Xylenes	ND			
Naphthalene	ND			
Benzo (a) anthracene	ND			
Benzo (b) fluoranthene	ND			
Benzo (k) fluoranthene	ND			
Chrysene	ND			
Dibenz (a, h) anthracene	ND			
TPH (EPA 3550)				
CoC		 		
Benzene				
Toluene				
Ethylbenzene				
Xylenes				
Naphthalene				
Benzo (a) anthracene				
Benzo (b) fluoranthene				
Benzo (k) fluoranthene				
Chrysene				
Dibenz (a, h) anthracene				
TPH (EPA 3550)				

SUMMARY OF ANALYSIS RESULTS (cont'd) Enter the ground water analytical data for each sample for all CoC in the table below. If free product is present, indicate the measured thickness to the nearest 0.01 feet.

CoC	RBSL	W-1	W-2	W -3	W -4
	(µg/l)				
Free Product Thickness	None				
Benzene	5				
Toluene	1,000				
Ethylbenzene	700				
Xylenes	10,000				
Total BTEX	N/A				
МТВЕ	40				
Naphthalene	25				
Benzo (a) anthracene	10				
Benzo (b) flouranthene	10				
Benzo (k) flouranthene	10				
Chrysene	10				
Dibenz (a, h) anthracene	10				
EDB	.05				
1,2-DCA	5				
Lead	Site specific				

XV. ANALYTICAL RESULTS

You must submit the laboratory report and chain-of-custody form for the samples. These samples must be analyzed by a South Carolina certified laboratory.

(Attach Certified Analytical Results and Chain-of-Custody Here) (Please see Form #4)

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Nashville 2960 Foster Creighton Road Nashville, TN 37204 Tel: 800-765-0980

TestAmerica Job ID: NWE3044

Client Project/Site: [none] Client Project Description: Laurel Bay Housing Project

For:

LINKS

Review your project results through

Total Access

Have a Question?

Ask

The

www.testamericainc.com

Visit us at:

Expert

EEG - Small Business Group, Inc. (2449) 10179 Highway 78 Ladson, SC 29456

Attn: Tom McElwee

Vinta Ha

Authorized for release by: 6/4/2012 5:23:48 PM

Ken A. Hayes Senior Project Manager ken.hayes@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	3
Definitions	4
Client Sample Results	5
QC Sample Results	8
QC Association	13
Chronicle	15
Method Summary	16
Certification Summary	17
Chain of Custody	18

Sample Summary

Client: EEG - Small Business Group, Inc. (2449) Project/Site: [none]

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
NWE3044-01	584 Aster	Soil	05/22/12 14:45	05/26/12 08:30
NWE3044-02	1267 Dove	Soil	05/23/12 15:15	05/26/12 08:30
NWE3044-03	900 Barracuda	Soil	05/24/12 13:45	05/26/12 08:30

Definitions/Glossary

Client: EEG - Small Business Group, Inc. (2449) Project/Site: [none]

Qualifiers

GCMS Volatiles

Qualifier	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

GCMS Semivolatiles

Qualifier	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
В	Analyte was detected in the associated Method Blank.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
ø	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CNF	Contains no Free Liquid
DL, RA, RE, IN	Indicates a Dilution, Reanalysis, Re-extraction, or additional Initial metals/anion analysis of the sample
EDL	Estimated Detection Limit
EPA	United States Environmental Protection Agency
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RL	Reporting Limit
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

Lab Sample ID: NWE3044-01 Client Sample ID: 584 Aster Date Collected: 05/22/12 14:45 Matrix: Soil Date Received: 05/26/12 08:30 Percent Solids: 97.2 Method: SW846 8260B - Volatile Organic Compounds by EPA Method 8260B Analyte **Result Qualifier** MDL Unit D Prepared Analyzed **Dil Fac** RL Benzene ND 0.00213 0.00117 mg/kg dry 10 05/22/12 14:45 05/28/12 19:40 1.00 Ċ. ND 0.00213 05/28/12 19:40 Ethylbenzene 0.00117 mg/kg dry 05/22/12 14:45 1.00 ND ò 05/22/12 14:45 05/28/12 19:40 Naphthalene 0.00534 0.00267 mg/kg dry 1.00 ø ND 0.00213 05/22/12 14:45 05/28/12 19:40 Toluene 0.00117 mg/kg dry 1.00 0.00534 4 05/22/12 14:45 05/28/12 19:40 Xylenes, total ND 0.00267 mg/kg dry 1.00 %Recovery Qualifier Limits Prepared Analyzed Dil Fac Surrogate 70 - 130 05/22/12 14:45 05/28/12 19:40 1.00 1,2-Dichloroethane-d4 119 05/28/12 19:40 Dibromofluoromethane 114 70 - 130 05/22/12 14:45 1.00 Toluene-d8 102 70 - 130 05/22/12 14:45 05/28/12 19:40 1.00 4-Bromofluorobenzene 108 70 - 130 05/22/12 14:45 05/28/12 19:40 1.00 Method: SW846 8270D - Polyaromatic Hydrocarbons by EPA 8270D Analyte **Result Qualifier** RL MDL Unit D Prepared Analyzed **Dil Fac** -ND 0.0346 mg/kg dry 06/01/12 10:53 06/02/12 22:49 Acenaphthene 0.0682 1.00 10 Acenaphthylene ND 0.0682 0.0346 mg/kg dry 06/01/12 10:53 06/02/12 22:49 1.00 Anthracene ND 0.0682 0.0346 mg/kg dry à 06/01/12 10:53 06/02/12 22:49 1.00 Benzo (a) anthracene ND 0.0682 0.0346 mg/kg dry 0 06/01/12 10:53 06/02/12 22:49 1.00 ND 0.0682 0.0346 mg/kg dry -06/01/12 10:53 06/02/12 22:49 1.00 Benzo (a) pyrene 12 06/02/12 22:49 Benzo (b) fluoranthene ND 0.0682 0.0346 mg/kg dry 06/01/12 10:53 1.00 0 ND 0.0682 0.0346 mg/kg dry 06/01/12 10:53 06/02/12 22:49 1.00 Benzo (g,h,i) perylene -06/01/12 10:53 06/02/12 22:49 Benzo (k) fluoranthene ND 0.0682 0.0346 mg/kg dry 1.00 -Chrysene ND 0.0682 0.0346 ma/ka dry 06/01/12 10:53 06/02/12 22:49 1.00 Dibenz (a,h) anthracene ND 0.0682 0.0346 mg/kg dry \$ 06/01/12 10:53 06/02/12 22:49 1.00 ND 0.0682 0.0346 mg/kg dry 0 06/01/12 10:53 06/02/12 22:49 1.00 Fluoranthene ö 06/02/12 22:49 0.0682 0.0346 mg/kg dry 06/01/12 10:53 Fluorene ND 1.00 06/01/12 10:53 06/02/12 22:49 Indeno (1,2,3-cd) pyrene ND 0.0682 0.0346 mg/kg dry 1.00 ÷ 06/02/12 22:49 ND 0.0682 06/01/12 10:53 1.00 Naphthalene 0.0346 mg/kg dry 3 Phenanthrene ND 0.0682 0.0346 mg/kg dry 06/01/12 10:53 06/02/12 22:49 1.00 ₩. ND 0.0682 06/01/12 10:53 06/02/12 22:49 1.00 Pyrene 0.0346 mg/kg dry à 1-Methylnaphthalene ND 0.0682 0.0346 mg/kg dry 06/01/12 10:53 06/02/12 22:49 1.00 ND 0.0682 0.0346 mg/kg dry \$ 06/01/12 10:53 06/02/12 22:49 1.00 2-Methylnaphthalene Limits Dil Fac Surrogate %Recovery Qualifier Prepared Analyzed

curroguto	,	quantita							
Terphenyl-d14	84		18 - 120				06/01/12 10:53	06/02/12 22:49	1.00
2-Fluorobiphenyl	64		14 - 120				06/01/12 10:53	06/02/12 22:49	1.00
Nitrobenzene-d5	61		17 - 120				06/01/12 10:53	06/02/12 22:49	1.00
Method: SW-846 - General	Chemistry Paramete	ers							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
% Dry Solids	97.2		0.500	0.500	%		05/26/12 14:30	05/29/12 08:19	1.00

Client: EEG - Small Business Group, Inc. (2449) Project/Site: [none]

Lab Sample ID: NWE3044-02 Matrix: Soil

Percent Solids: 96.6

Date Collected: 05/23/12 15:15 Date Received: 05/26/12 08:30

Client Sample ID: 1267 Dove

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.00224	0.00123	mg/kg dry	\$	05/23/12 15:15	05/28/12 20:13	1.00
Ethylbenzene	ND		0.00224	0.00123	mg/kg dry	¢	05/23/12 15:15	05/28/12 20:13	1.00
Naphthalene	ND		0.00560	0.00280	mg/kg dry	¢	05/23/12 15:15	05/28/12 20:13	1.00
Toluene	ND		0.00224	0.00123	mg/kg dry	¢	05/23/12 15:15	05/28/12 20:13	1.00
Xylenes, total	0.00406	J	0.00560	0.00280	mg/kg dry	¢	05/23/12 15:15	05/28/12 20:13	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4	119		70 - 130				05/23/12 15:15	05/28/12 20:13	1.00
Dibromofluoromethane	112		70 - 130				05/23/12 15:15	05/28/12 20:13	1.00
Toluene-d8	102		70 - 130				05/23/12 15:15	05/28/12 20:13	1.00
4-Bromofluorobenzene	109		70 - 130				05/23/12 15:15	05/28/12 20:13	1.00

Method: SW846 8270D - Polyaromatic Hydrocarbons by EPA 8270D

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		0.0680	0.0345	mg/kg dry	\$	06/01/12 10:53	06/02/12 23:09	1.00
Acenaphthylene	ND		0.0680	0.0345	mg/kg dry	\$	06/01/12 10:53	06/02/12 23:09	1.00
Anthracene	ND		0.0680	0.0345	mg/kg dry	¢	06/01/12 10:53	06/02/12 23:09	1.00
Benzo (a) anthracene	ND		0.0680	0.0345	mg/kg dry	¢	06/01/12 10:53	06/02/12 23:09	1.00
Benzo (a) pyrene	ND		0.0680	0.0345	mg/kg dry	\$	06/01/12 10:53	06/02/12 23:09	1.00
Benzo (b) fluoranthene	ND		0.0680	0.0345	mg/kg dry	¢	06/01/12 10:53	06/02/12 23:09	1.00
Benzo (g,h,i) perylene	0.0666	JB	0.0680	0.0345	mg/kg dry	\$	06/01/12 10:53	06/02/12 23:09	1.00
Benzo (k) fluoranthene	ND		0.0680	0.0345	mg/kg dry	\$	06/01/12 10:53	06/02/12 23:09	1.00
Chrysene	ND		0.0680	0.0345	mg/kg dry	¢	06/01/12 10:53	06/02/12 23:09	1.00
Dibenz (a,h) anthracene	ND		0.0680	0.0345	mg/kg dry	\$	06/01/12 10:53	06/02/12 23:09	1.00
Fluoranthene	ND		0.0680	0.0345	mg/kg dry	¢	06/01/12 10:53	06/02/12 23:09	1.00
Fluorene	ND		0.0680	0.0345	mg/kg dry	ø	06/01/12 10:53	06/02/12 23:09	1.00
Indeno (1,2,3-cd) pyrene	ND		0.0680	0.0345	mg/kg dry	¢	06/01/12 10:53	06/02/12 23:09	1.00
Naphthalene	ND		0.0680	0.0345	mg/kg dry	\$	06/01/12 10:53	06/02/12 23:09	1.00
Phenanthrene	ND		0.0680	0.0345	mg/kg dry	\$	06/01/12 10:53	06/02/12 23:09	1.00
Pyrene	ND		0.0680	0.0345	mg/kg dry	ø	06/01/12 10:53	06/02/12 23:09	1.00
1-Methylnaphthalene	ND		0.0680	0.0345	mg/kg dry	¢	06/01/12 10:53	06/02/12 23:09	1.00
2-Methylnaphthalene	ND		0.0680	0.0345	mg/kg dry	\$	06/01/12 10:53	06/02/12 23:09	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Terphenyl-d14	77		18 - 120				06/01/12 10:53	06/02/12 23:09	1.00
2-Fluorobiphenyl	59		14 - 120				06/01/12 10:53	06/02/12 23:09	1.00
Nitrobenzene-d5	58		17 - 120				06/01/12 10:53	06/02/12 23:09	1.00

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
% Dry Solids	96.6	0.500	0.500	%	_	05/26/12 14:30	05/29/12 08:19	1.00

Lab Sample ID: NWE3044-03 Matrix: Soil

Percent Solids: 95.6

Date Collected: 05/24/12 13:45 Date Received: 05/26/12 08:30

Client Sample ID: 900 Barracuda

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.00226	0.00124	mg/kg dry	Ø	05/24/12 13:45	05/28/12 20:45	1.00
Ethylbenzene	ND		0.00226	0.00124	mg/kg dry	亞	05/24/12 13:45	05/28/12 20:45	1.00
Naphthalene	ND		0.00565	0.00282	mg/kg dry	Ø	05/24/12 13:45	05/28/12 20:45	1.00
Toluene	ND		0.00226	0.00124	mg/kg dry	Ø	05/24/12 13:45	05/28/12 20:45	1.00
Xylenes, total	ND		0.00565	0.00282	mg/kg dry	¢	05/24/12 13:45	05/28/12 20:45	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4	117		70 - 130				05/24/12 13:45	05/28/12 20:45	1.00
Dibromofluoromethane	111		70 - 130				05/24/12 13:45	05/28/12 20:45	1.00
Toluene-d8	101		70 - 130				05/24/12 13:45	05/28/12 20:45	1.00
4-Bromofluorobenzene	107		70 - 130				05/24/12 13:45	05/28/12 20:45	1.00

Method: SW846 8270D - Polyaromatic Hydrocarbons by EPA 8270D

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		0.0695	0.0353	mg/kg dry	¢	06/01/12 10:53	06/02/12 23:30	1.00
Acenaphthylene	ND		0.0695	0.0353	mg/kg dry	¢	06/01/12 10:53	06/02/12 23:30	1.00
Anthracene	ND		0.0695	0.0353	mg/kg dry	ø	06/01/12 10:53	06/02/12 23:30	1.00
Benzo (a) anthracene	ND		0.0695	0.0353	mg/kg dry	Q	06/01/12 10:53	06/02/12 23:30	1.00
Benzo (a) pyrene	ND		0.0695	0.0353	mg/kg dry	102	06/01/12 10:53	06/02/12 23:30	1.00
Benzo (b) fluoranthene	ND		0.0695	0.0353	mg/kg dry	Q	06/01/12 10:53	06/02/12 23:30	1.00
Benzo (g,h,i) perylene	ND		0.0695	0.0353	mg/kg dry	ø	06/01/12 10:53	06/02/12 23:30	1.00
Benzo (k) fluoranthene	ND		0.0695	0.0353	mg/kg dry	¢	06/01/12 10:53	06/02/12 23:30	1.00
Chrysene	ND		0.0695	0.0353	mg/kg dry	ø	06/01/12 10:53	06/02/12 23:30	1.00
Dibenz (a,h) anthracene	ND		0.0695	0.0353	mg/kg dry	æ	06/01/12 10:53	06/02/12 23:30	1.00
Fluoranthene	ND		0.0695	0.0353	mg/kg dry	¢	06/01/12 10:53	06/02/12 23:30	1.00
Fluorene	ND		0.0695	0.0353	mg/kg dry	¢	06/01/12 10:53	06/02/12 23:30	1.00
Indeno (1,2,3-cd) pyrene	ND		0.0695	0.0353	mg/kg dry	¢	06/01/12 10:53	06/02/12 23:30	1.00
Naphthalene	ND		0.0695	0.0353	mg/kg dry	Φ	06/01/12 10:53	06/02/12 23:30	1.00
Phenanthrene	ND		0.0695	0.0353	mg/kg dry	¢.	06/01/12 10:53	06/02/12 23:30	1.00
Pyrene	ND		0.0695	0.0353	mg/kg dry	ø	06/01/12 10:53	06/02/12 23:30	1.00
1-Methylnaphthalene	ND		0.0695	0.0353	mg/kg dry	¢	06/01/12 10:53	06/02/12 23:30	1.00
2-Methylnaphthalene	ND		0.0695	0.0353	mg/kg dry	Ø	06/01/12 10:53	06/02/12 23:30	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Terphenyl-d14	84		18 - 120				06/01/12 10:53	06/02/12 23:30	1.00
2-Fluorobiphenyl	64		14 - 120				06/01/12 10:53	06/02/12 23:30	1.00
Nitrobenzene-d5	64		17 - 120				06/01/12 10:53	06/02/12 23:30	1.00
Method: SW-846 - General C	hemistry Paramete	rs							
Analyte	a manufacture of the second	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
% Dry Solids	95.6		0.500	0.500	%		05/26/12 14:30	05/29/12 08:19	1.00

Method: SW846 8260B - Volatile Organic Compounds by EPA Method 8260B

Lab Sample ID: 12E5605-BLK1 Matrix: Soil							Client Sa	mple ID: Metho Prep Typ	
Analysis Batch: V009004	Blank	Blank					F	Prep Batch: 12E	5605_P
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.00200	0.00110	mg/kg wet		05/28/12 11:34	05/28/12 14:15	1.00
Ethylbenzene	ND		0.00200	0.00110	mg/kg wet		05/28/12 11:34	05/28/12 14:15	1.00
Naphthalene	ND		0.00500	0.00250	mg/kg wet		05/28/12 11:34	05/28/12 14:15	1.00
Toluene	ND		0.00200	0.00110	mg/kg wet		05/28/12 11:34	05/28/12 14:15	1.00
Xylenes, total	ND		0.00500	0.00250	mg/kg wet		05/28/12 11:34	05/28/12 14:15	1.00
	Blank	Blank							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4	116		70 - 130				05/28/12 11:34	05/28/12 14:15	1.00
Dibromofluoromethane	109		70 - 130				05/28/12 11:34	05/28/12 14:15	1.00
Toluene-d8	106		70 - 130				05/28/12 11:34	05/28/12 14:15	1.00
4-Bromofluorobenzene	107		70 - 130				05/28/12 11:34	05/28/12 14:15	1.00

Lab Sample ID: 12E5605-BLK2 Matrix: Soil Analysis Batch: V009004

POTON AND PROPERTY OF THE ADDRESS OF	Blank	Blank						117 Martine Martine	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.100	0.0550	mg/kg wet		05/28/12 11:34	05/28/12 14:48	50.0
Ethylbenzene	ND		0.100	0.0550	mg/kg wet		05/28/12 11:34	05/28/12 14:48	50.0
Naphthalene	ND		0.250	0.125	mg/kg wet		05/28/12 11:34	05/28/12 14:48	50.0
Toluene	ND		0.100	0.0550	mg/kg wet		05/28/12 11:34	05/28/12 14:48	50.0
Xylenes, total	ND		0.250	0.125	mg/kg wet		05/28/12 11:34	05/28/12 14:48	50.0
	Blank	Blank							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

	, and a second s		· · · · · · · · · · · · · · · · · · ·		
1,2-Dichloroethane-d4	118	70 - 130	05/28/12 11:34	05/28/12 14:48	50.0
Dibromofluoromethane	111	70 - 130	05/28/12 11:34	05/28/12 14:48	50.0
Toluene-d8	104	70 - 130	05/28/12 11:34	05/28/12 14:48	50.0
4-Bromofluorobenzene	106	70 - 130	05/28/12 11:34	05/28/12 14:48	50.0

Lab Sample ID: 12E5605-BS1 Matrix: Soil

Analysis Batch: V009004

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene	50.0	48.5	1	ug/kg		97	75 - 127
Ethylbenzene	50.0	48.6		ug/kg		97	80 - 134
Naphthalene	50.0	60.4		ug/kg		121	69 - 150
Toluene	50.0	48.8		ug/kg		98	80 - 132
Xylenes, total	150	143		ug/kg		95	80 - 137

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4	114		70 - 130
Dibromofluoromethane	111		70 - 130
Toluene-d8	103		70 - 130
4-Bromofluorobenzene	108		70 - 130

Client Sample ID: Lab Control Sample

Client Sample ID: Method Blank

Prep Type: Total

Prep Batch: 12E5605 P

Prep Type: Total

Prep Batch: 12E5605_P	
%Rec.	
Limite	

QC Sample Results

Method: SW846 8260B - Volatile Organic Compounds by EPA Method 8260B (Continued)

Lab Sample ID: 12E5605-BSD1				Clie	nt San	ple ID:	Lab Contro	I Sampl	e Dup
Matrix: Soil							Pre	p Type:	Total
Analysis Batch: V009004							Prep Batc	h: 12E5	605_P
	Spike	LCS Dup	LCS Dup				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	50.0	44.8		ug/kg		90	75 - 127	8	50
Ethylbenzene	50.0	45.1		ug/kg		90	80 - 134	8	50
Naphthalene	50.0	57.5		ug/kg		115	69 - 150	5	50
Toluene	50.0	44.5		ug/kg		89	80 - 132	9	50
Xylenes, total	150	133		ug/kg		89	80 - 137	7	50

	LCS Dup	LCS Dup	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4	116		70 - 130
Dibromofluoromethane	111	1 miles	70 - 130
Toluene-d8	103		70 - 130
4-Bromofluorobenzene	105		70 - 130

Lab Sample ID: 12E5605-MS1 Matrix: Soil Analysis Batch: V009004

The state of the s	Sample	Sample	Spike	Matrix Spike	Matrix Spik	(e			%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene	0.00113		0.0517	0.0482		mg/kg dry	ø	91	31 - 143
Ethylbenzene	0.00754		0.0517	0.0499		mg/kg dry	¢	82	23 - 161
Naphthalene	0.00361		0.0517	0.0488		mg/kg dry	¢	87	10 - 176
Toluene	0.00680		0.0517	0.0568		mg/kg dry	æ	97	30 - 155
Xylenes, total	0.0434		0.155	0.150		mg/kg dry	¢.	69	25 - 162

	Matrix Spike	Matrix Spike	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4	115		70 - 130
Dibromofluoromethane	111		70 - 130
Toluene-d8	102		70 - 130
4-Bromofluorobenzene	112		70 - 130

Lab Sample ID: 12E5605-MSD1 Matrix: Soil

Analysis Batch: V009004

Sample	Sample	Spike	trix Spike Dup	Matrix Spil	ke Duş			%Rec.		RPD
Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
0.00113		0.0515	0.0455		mg/kg dry	\$	86	31 - 143	6	50
0.00754		0.0515	0.0475		mg/kg dry	\$	78	23 - 161	5	50
0.00361		0.0515	0.0487		mg/kg dry	\$	88	10 - 176	0.3	50
0.00680		0.0515	0.0472		mg/kg dry	0	79	30 - 155	18	50
0.0434		0.154	0.142		mg/kg dry	ø	64	25 - 162	6	50
	Result 0.00113 0.00754 0.00361 0.00680	0.00754 0.00361 0.00680	Result Qualifier Added 0.00113 0.0515 0.00754 0.0515 0.00361 0.0515 0.00680 0.0515	Result Qualifier Added Result 0.00113 0.0515 0.0455 0.00754 0.0515 0.0475 0.00361 0.0515 0.0487 0.00680 0.0515 0.0472	Result Qualifier Added Result Qualifier 0.00113 0.0515 0.0455 0.00754 0.0515 0.0475 0.00361 0.0515 0.0487 0.00680 0.0515 0.0472	Result Qualifier Added Result Qualifier Unit 0.00113 0.0515 0.0455 mg/kg dry 0.00754 0.0515 0.0475 mg/kg dry 0.00361 0.0515 0.0487 mg/kg dry 0.00680 0.0515 0.0472 mg/kg dry	Result Qualifier Added Result Qualifier Unit D 0.00113 0.0515 0.0455 mg/kg dry \$ 0.00754 0.0515 0.0475 mg/kg dry \$ 0.00361 0.0515 0.0487 mg/kg dry \$ 0.00680 0.0515 0.0472 mg/kg dry \$	Result Qualifier Added Result Qualifier Unit D %Rec 0.00113 0.0515 0.0455 mg/kg dry % 86 0.00754 0.0515 0.0475 mg/kg dry % 78 0.00361 0.0515 0.0487 mg/kg dry % 88 0.00680 0.0515 0.0472 mg/kg dry % 79	Result Qualifier Added Result Qualifier Unit D %Rec Limits 0.00113 0.0515 0.0455 mg/kg dry 0 86 31 - 143 0.00754 0.0515 0.0475 mg/kg dry 0 88 23 - 161 0.00361 0.0515 0.0487 mg/kg dry 0 88 10 - 176 0.00680 0.0515 0.0472 mg/kg dry 79 30 - 155	Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD 0.00113 0.0515 0.0455 mg/kg dry 0 86 31 - 143 6 0.00754 0.0515 0.0475 mg/kg dry 0 86 31 - 143 6 0.00361 0.0515 0.0475 mg/kg dry 0 88 10 - 176 0.3 0.00680 0.0515 0.0472 mg/kg dry 79 30 - 155 18

	Matrix Spike Dup	Matrix Spike Dup Matrix Spike			
Surrogate	%Recovery	Qualifier	Limits		
1,2-Dichloroethane-d4	117		70 - 130		
Dibromofluoromethane	112		70 - 130		
Toluene-d8	101		70 - 130		
4-Bromofluorobenzene	110		70 - 130		

Client Sample ID: Matrix Spike Duplicate Prep Type: Total Prep Batch: 12E5605_P

TestAmerica Nashville 6/4/2012

Client Sample ID: Matrix Spike Prep Type: Total

Prep Batch: 12E5605 P

Method: SW846 8270D - Polyaromatic Hydrocarbons by EPA 8270D

Lab Sample ID: 12E6300-BLK1 Matrix: Soil

Analysis Batch: 12E6300

Client Sample ID: Method Blank	
Prep Type: Total	
Prep Batch: 12E6300_P	

	Blank	Blank							-
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		0.0670	0.0340	mg/kg wet	-	06/01/12 10:53	06/03/12 14:44	1.00
Acenaphthylene	ND		0.0670	0.0340	mg/kg wet		06/01/12 10:53	06/03/12 14:44	1.00
Anthracene	ND		0.0670	0.0340	mg/kg wet		06/01/12 10:53	06/03/12 14:44	1.00
Benzo (a) anthracene	ND		0.0670	0.0340	mg/kg wet		06/01/12 10:53	06/03/12 14:44	1.00
Benzo (a) pyrene	ND		0.0670	0.0340	mg/kg wet		06/01/12 10:53	06/03/12 14:44	1.00
Benzo (b) fluoranthene	ND		0.0670	0.0340	mg/kg wet		06/01/12 10:53	06/03/12 14:44	1.00
Benzo (g,h,i) perylene	0.0497	J	0.0670	0.0340	mg/kg wet		06/01/12 10:53	06/03/12 14:44	1.00
Benzo (k) fluoranthene	ND		0.0670	0.0340	mg/kg wet		06/01/12 10:53	06/03/12 14:44	1.00
Chrysene	ND		0.0670	0.0340	mg/kg wet		06/01/12 10:53	06/03/12 14:44	1.00
Dibenz (a,h) anthracene	0.0470	J	0.0670	0.0340	mg/kg wet		06/01/12 10:53	06/03/12 14:44	1.00
Fluoranthene	ND		0.0670	0.0340	mg/kg wet		06/01/12 10:53	06/03/12 14:44	1.00
Fluorene	ND		0.0670	0.0340	mg/kg wet		06/01/12 10:53	06/03/12 14:44	1.00
Indeno (1,2,3-cd) pyrene	0.0433	J	0.0670	0.0340	mg/kg wet		06/01/12 10:53	06/03/12 14:44	1.00
Naphthalene	ND		0.0670	0.0340	mg/kg wet		06/01/12 10:53	06/03/12 14:44	1.00
Phenanthrene	ND		0.0670	0.0340	mg/kg wet		06/01/12 10:53	06/03/12 14:44	1.00
Pyrene	ND		0.0670	0.0340	mg/kg wet		06/01/12 10:53	06/03/12 14:44	1.00
1-Methylnaphthalene	ND		0.0670	0.0340	mg/kg wet		06/01/12 10:53	06/03/12 14:44	1.00
2-Methylnaphthalene	ND		0.0670	0.0340	mg/kg wet		06/01/12 10:53	06/03/12 14:44	1.00
	Blank	Blank							

	Diarik Diarik				
Surrogate	%Recovery Qualifi	er Limits	Prepared	Analyzed	Dil Fac
Terphenyl-d14	69	18 - 120	06/01/12 10:53	06/03/12 14:44	1.00
2-Fluorobiphenyl	55	14 - 120	06/01/12 10:53	06/03/12 14:44	1.00
Nitrobenzene-d5	55	17 - 120	06/01/12 10:53	06/03/12 14:44	1.00

Lab Sample ID: 12E6300-BS1 Matrix: Soil Analysis Batch: 12E6300

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Acenaphthene	1.67	1.41		mg/kg wet		84	36 - 120
Acenaphthylene	1.67	1.49		mg/kg wet		90	38 - 120
Anthracene	1.67	1.49		mg/kg wet		89	46 - 124
Benzo (a) anthracene	1.67	1.48		mg/kg wet		89	45 - 120
Benzo (a) pyrene	1.67	1.60		mg/kg wet		96	45 - 120
Benzo (b) fluoranthene	1.67	1.53		mg/kg wet		92	42 - 120
Benzo (g,h,i) perylene	1.67	1.44	в	mg/kg wet		87	38 - 120
Benzo (k) fluoranthene	1.67	1.45		mg/kg wet		87	42 - 120
Chrysene	1.67	1.42		mg/kg wet		85	43 - 120
Dibenz (a,h) anthracene	1.67	1.50	в	mg/kg wet		90	32 - 128
Fluoranthene	1.67	1.48		mg/kg wet		89	46 - 120
Fluorene	1.67	1.50		mg/kg wet		90	42 - 120
Indeno (1,2,3-cd) pyrene	1.67	1.47	в	mg/kg wet		88	41 - 121
Naphthalene	1.67	1.50		mg/kg wet		90	32 - 120
Phenanthrene	1.67	1.46		mg/kg wet		88	45 - 120
Pyrene	1.67	1.47		mg/kg wet		88	43 - 120
1-Methylnaphthalene	1.67	1.08		mg/kg wet		65	32 - 120
2-Methylnaphthalene	1.67	1.44		mg/kg wet		86	28 - 120

Client Sample ID: Lab Control Sample Prep Type: Total

Prep Batch: 12E6300_P

Method: SW846 8270D - Polyaromatic Hydrocarbons by EPA 8270D (Continued)

Lab Sample ID: 12E6300-BS1 Matrix: Soil Analysis Batch: 12E6300

Client Sample ID: Lab Control Sample Prep Type: Total Prep Batch: 12E6300_P

Client Sample ID: Matrix Spike

Prep Type: Total

LCS	LCS	
%Recovery	Qualifier	Limits
83		18 - 120
66		14 - 120
65		17 - 120
	%Recovery 83 66	66

Lab Sample ID: 12E6300-MS1 Matrix: Soil Analysis Batch: 12E6300

Analysis Batch: 12E6300									Prep Batch: 12E6300_P
	Sample	Sample	Spike	Matrix Spike	Matrix Spil	ke			%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Acenaphthene	ND		1.97	1.73		mg/kg dry	-	88	19 - 120
Acenaphthylene	ND		1.97	1.85		mg/kg dry	ø	94	25 - 120
Anthracene	ND		1.97	1.79		mg/kg dry	¢	91	28 - 125
Benzo (a) anthracene	ND		1.97	1.95		mg/kg dry	\$	99	23 - 120
Benzo (a) pyrene	ND		1.97	1.98		mg/kg dry	¢	100	15 - 128
Benzo (b) fluoranthene	ND		1.97	1.89		mg/kg dry	¢	96	12 - 133
Benzo (g,h,i) perylene	ND		1.97	1.75	в	mg/kg dry	\$	89	22 - 120
Benzo (k) fluoranthene	ND		1.97	1.76		mg/kg dry	¢	89	28 - 120
Chrysene	ND		1.97	1.82		mg/kg dry	¢	92	20 - 120
Dibenz (a,h) anthracene	ND		1.97	1.83	в	mg/kg dry	\$	93	12 - 128
Fluoranthene	ND		1.97	1.78		mg/kg dry	\$	90	10 - 143
Fluorene	ND		1.97	1.86		mg/kg dry	¢	94	20 - 120
Indeno (1,2,3-cd) pyrene	ND		1.97	1.81	в	mg/kg dry	臣	92	22 - 121
Naphthalene	ND		1.97	1.91		mg/kg dry	\$	97	10 - 120
Phenanthrene	ND		1.97	1.81		mg/kg dry	ø	92	21 - 122
Pyrene	ND		1.97	2.05		mg/kg dry	¢	104	20 - 123
1-Methylnaphthalene	ND		1.97	1.39		mg/kg dry	\$	71	10 - 120
2-Methylnaphthalene	ND		1.97	1.87		mg/kg dry	¢	95	13 - 120
	Matrix Snike	Matrix Snike							

matrix Spike	matrix Spike	
%Recovery	Qualifier	Limits
91		18 - 120
65		14 - 120
61		17 - 120
	%Recovery 91 65	65

Lab Sample ID: 12E6300-MSD1 Matrix: Soil

Analysis Batch: 12E6300

Client Sample I	D: Matrix Spike	e Duplicate
	Prep	Type: Total

Prep Batch: 12E6300 P

randigolo Batolii. The cooo											
a second second second	Sample	Sample	Spike	ıtrix Spike Dup	Matrix Spil	ke Duj			%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Acenaphthene	ND		1.94	1.45		mg/kg dry	Ø	75	19 - 120	17	50
Acenaphthylene	ND		1.94	1.57		mg/kg dry	¢	81	25 - 120	17	50
Anthracene	ND		1.94	1.60		mg/kg dry	¢	83	28 - 125	11	49
Benzo (a) anthracene	ND		1.94	1.59		mg/kg dry	42	82	23 - 120	20	50
Benzo (a) pyrene	ND		1.94	1.71		mg/kg dry	¢	88	15 - 128	15	50
Benzo (b) fluoranthene	ND		1.94	1.64		mg/kg dry	Ø	84	12 - 133	15	50
Benzo (g,h,i) perylene	ND		1.94	1.51	в	mg/kg dry	ø	78	22 - 120	15	50
Benzo (k) fluoranthene	ND		1.94	1.53		mg/kg dry	¢	79	28 - 120	14	45
Chrysene	ND		1.94	1.51		mg/kg dry	ø	78	20 - 120	19	49
Dibenz (a,h) anthracene	ND		1.94	1.58	в	mg/kg dry	\$	82	12 - 128	15	50
Fluoranthene	ND		1.94	1.56		mg/kg dry	12	80	10 - 143	13	50

Method: SW846 8270D - Polyaromatic Hydrocarbons by EPA 8270D (Continued)

Lab Sample ID: 12E6300-MS	D1					Clie	ent S	ample ID	D: Matrix Sp	oike Dup	olicate
Matrix: Soil									Pre	p Type:	Total
Analysis Batch: 12E6300									Prep Batc	h: 12E6	300_P
	Sample	Sample	Spike	ıtrix Spike Dup	Matrix Spi	ke Duj			%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Fluorene	ND		1.94	1.54		mg/kg dry	ŵ	80	20 - 120	18	50
Indeno (1,2,3-cd) pyrene	ND		1.94	1.54	В	mg/kg dry	ø	79	22 - 121	16	50
Naphthalene	ND		1.94	1.57		mg/kg dry	ø	81	10 - 120	20	50
Phenanthrene	ND		1.94	1.54		mg/kg dry	¢	79	21 - 122	16	50
Pyrene	ND		1.94	1.63		mg/kg dry	ø	84	20 - 123	23	50
1-Methylnaphthalene	ND		1.94	1.12		mg/kg dry	ø	58	10 - 120	22	50
2-Methylnaphthalene	ND		1.94	1.50		mg/kg dry	\$	77	13 - 120	22	50
	Matrix Spike Dup	Matrix Spike	Dup								
Surrogate	%Recovery	Qualifier	Limits								

Surrogate	%Recovery	Qualifier	Limits
Terphenyl-d14	78		18 - 120
2-Fluorobiphenyl	58		14 - 120
Nitrobenzene-d5	54		17 - 120

Method: SW-846 - General Chemistry Parameters

Lab Sample ID: 12E5891-DUP1							Client Sample ID: Du	olicate
Matrix: Soil							Prep Type	: Total
Analysis Batch: 12E5891							Prep Batch: 12E5	891_P
	Sample	Sample	Duplicate	Duplicate				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
% Dry Solids	77.3		80.1		%		4	20

QC Association Summary

Client: EEG - Small Business Group, Inc. (2449) Project/Site: [none]

GCMS Volatiles

Analysis Batch: V009004

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
12E5605-BLK1	Method Blank	Total	Soil	SW846 8260B	12E5605_P
12E5605-BLK2	Method Blank	Total	Soil	SW846 8260B	12E5605_P
12E5605-BS1	Lab Control Sample	Total	Soil	SW846 8260B	12E5605_P
12E5605-BSD1	Lab Control Sample Dup	Total	Soil	SW846 8260B	12E5605_P
12E5605-MS1	Matrix Spike	Total	Soil	SW846 8260B	12E5605_P
12E5605-MSD1	Matrix Spike Duplicate	Total	Soil	SW846 8260B	12E5605_P
NWE3044-01	584 Aster	Total	Soil	SW846 8260B	12E5605_P
NWE3044-02	1267 Dove	Total	Soil	SW846 8260B	12E5605_P
NWE3044-03	900 Barracuda	Total	Soil	SW846 8260B	12E5605_P

Prep Batch: 12E5605_P

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
12E5605-BLK1	Method Blank	Total	Soil	EPA 5035	
12E5605-BLK2	Method Blank	Total	Soil	EPA 5035	
12E5605-BS1	Lab Control Sample	Total	Soil	EPA 5035	
12E5605-BSD1	Lab Control Sample Dup	Total	Soil	EPA 5035	
12E5605-MS1	Matrix Spike	Total	Soil	EPA 5035	
12E5605-MSD1	Matrix Spike Duplicate	Total	Soil	EPA 5035	
NWE3044-01	584 Aster	Total	Soil	EPA 5035	
NWE3044-02	1267 Dove	Total	Soil	EPA 5035	
NWE3044-03	900 Barracuda	Total	Soil	EPA 5035	

GCMS Semivolatiles

Analysis Batch: 12E6300

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
12E6300-BLK1	Method Blank	Total	Soil	SW846 8270D	12E6300_P
12E6300-BS1	Lab Control Sample	Total	Soil	SW846 8270D	12E6300_P
12E6300-MS1	Matrix Spike	Total	Soil	SW846 8270D	12E6300_P
12E6300-MSD1	Matrix Spike Duplicate	Total	Soil	SW846 8270D	12E6300_P
NWE3044-01	584 Aster	Total	Soil	SW846 8270D	12E6300_P
NWE3044-02	1267 Dove	Total	Soil	SW846 8270D	12E6300_P
NWE3044-03	900 Barracuda	Total	Soil	SW846 8270D	12E6300_P

Prep Batch: 12E6300_P

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
12E6300-BLK1	Method Blank	Total	Soil	EPA 3550C	
12E6300-BS1	Lab Control Sample	Total	Soil	EPA 3550C	
12E6300-MS1	Matrix Spike	Total	Soil	EPA 3550C	
12E6300-MSD1	Matrix Spike Duplicate	Total	Soil	EPA 3550C	
NWE3044-01	584 Aster	Total	Soil	EPA 3550C	
NWE3044-02	1267 Dove	Total	Soil	EPA 3550C	
NWE3044-03	900 Barracuda	Total	Soil	EPA 3550C	

Extractions

Analysis Batch: 12E5891

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
12E5891-DUP1	Duplicate	Total	Soil	SW-846	12E5891_P
NWE3044-01	584 Aster	Total	Soil	SW-846	12E5891_P
NWE3044-02	1267 Dove	Total	Soil	SW-846	12E5891_P
NWE3044-03	900 Barracuda	Total	Soil	SW-846	12E5891_P

QC Association Summary

Client: EEG - Small Business Group, Inc. (2449) Project/Site: [none]

Extractions (Continued)

Prep Batch: 12E5891_P

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
12E5891-DUP1	Duplicate	Total	Soil	% Solids	
NWE3044-01	584 Aster	Total	Soil	% Solids	
NWE3044-02	1267 Dove	Total	Soil	% Solids	
NWE3044-03	900 Barracuda	Total	Soil	% Solids	

Lab Sample ID: NWE3044-01

Lab Sample ID: NWE3044-02

Matrix: Soil Percent Solids: 97.2

Matrix: Soil

Percent Solids: 96.6

Date Collected: 05/22/12 14:45 Date Received: 05/26/12 08:30

Client Sample ID: 584 Aster

Prep Type	Batch Type	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Total	Prep	EPA 5035		1.04	12E5605_P	05/22/12 14:45	AAN	TAL NSH
Total	Analysis	SW846 8260B		1.00	V009004	05/28/12 19:40	ККК Н	TAL NSH
Total	Prep	EPA 3550C		0.989	12E6300_P	06/01/12 10:53	JJR	TAL NSH
Total	Analysis	SW846 8270D		1.00	12E6300	06/02/12 22:49	WLL	TAL NSH
Total	Prep	% Solids		1.00	12E5891_P	05/26/12 14:30	JXM	TAL NSH
Total	Analysis	SW-846		1.00	12E5891	05/29/12 08:19	KDJ	TAL NSH

Client Sample ID: 1267 Dove Date Collected: 05/23/12 15:15

Date Received: 05/26/12 08:30

Prep Type	Batch Type	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Total	Prep	EPA 5035		1.08	12E5605_P	05/23/12 15:15	AAN	TAL NSH
Total	Analysis	SW846 8260B		1.00	V009004	05/28/12 20:13	ккк н	TAL NSH
Total	Prep	EPA 3550C		0.980	12E6300_P	06/01/12 10:53	JJR	TAL NSH
Total	Analysis	SW846 8270D		1.00	12E6300	06/02/12 23:09	WLL	TAL NSH
Total	Prep	% Solids		1.00	12E5891_P	05/26/12 14:30	JXM	TAL NSH
Total	Analysis	SW-846		1.00	12E5891	05/29/12 08:19	KDJ	TAL NSH

Client Sample ID: 900 Barracuda Date Collected: 05/24/12 13:45

Date Received: 05/26/12 08:30

Lab	Sample	ID:	NWE3044-03
			Matrix: Soil

Percent Solids: 95.6

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	EPA 5035		1.08	12E5605_P	05/24/12 13:45	AAN	TAL NSH
Total	Analysis	SW846 8260B		1.00	V009004	05/28/12 20:45	ККК Н	TAL NSH
Total	Prep	EPA 3550C		0.992	12E6300_P	06/01/12 10:53	JJR	TAL NSH
Total	Analysis	SW846 8270D		1.00	12E6300	06/02/12 23:30	WLL	TAL NSH
Total	Prep	% Solids		1.00	12E5891_P	05/26/12 14:30	JXM	TAL NSH
Total	Analysis	SW-846		1.00	12E5891	05/29/12 08:19	KDJ	TAL NSH

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Road, Nashville, TN 37204, TEL 800-765-0980

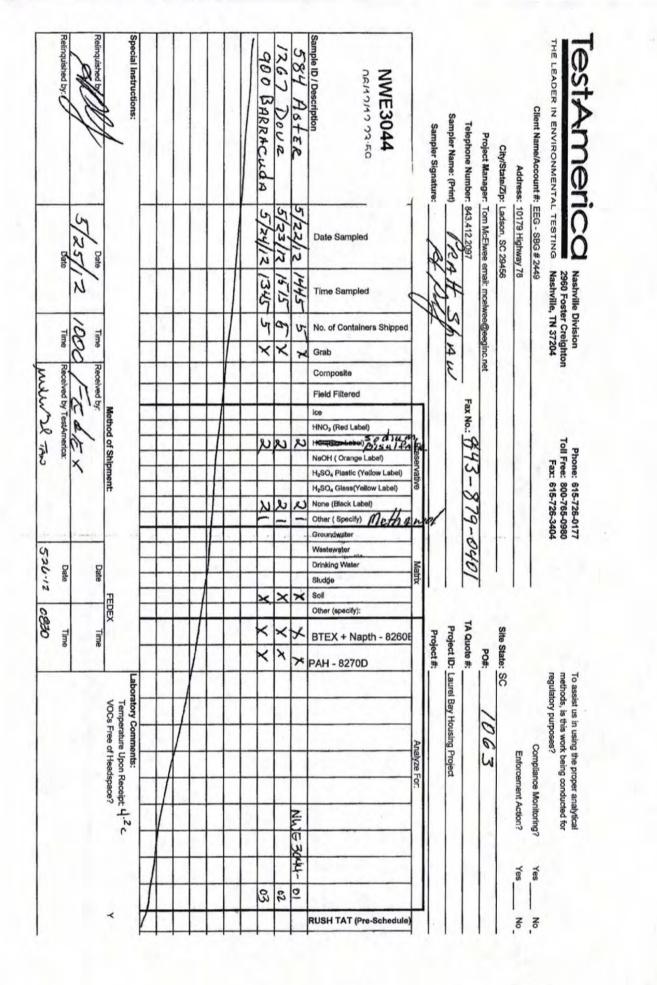
Method Summary

Client: EEG - Small Business Group, Inc. (2449) Project/Site: [none]

Method	Method Description	Protocol	Laboratory
SW-846	General Chemistry Parameters		TAL NSH
SW846 8260B	Volatile Organic Compounds by EPA Method 8260B		TAL NSH
SW846 8270D	Polyaromatic Hydrocarbons by EPA 8270D		TAL NSH

Protocol References:

Laboratory References:


TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Road, Nashville, TN 37204, TEL 800-765-0980

Certification Summary

Client: EEG - Small Business Group, Inc. (2449) Project/Site: [none]

Laboratory	Authority	Program	EPA Region	Certification ID	
TestAmerica Nashville		ACIL		393	
estAmerica Nashville	A2LA	ISO/IEC 17025		0453.07	
estAmerica Nashville	Alabama	State Program	4	41150	
estAmerica Nashville	Alaska (UST)	State Program	10	UST-087	
estAmerica Nashville	Arizona	State Program	9	AZ0473	
estAmerica Nashville	Arkansas DEQ	State Program	6	88-0737	
estAmerica Nashville	California	NELAC	9	1168CA	
estAmerica Nashville	Canadian Assoc Lab Accred (CALA)	Canada		3744	
estAmerica Nashville	Colorado	State Program	8	N/A	
estAmerica Nashville	Connecticut	State Program	1	PH-0220	
estAmerica Nashville	Florida	NELAC	4	E87358	
estAmerica Nashville	Illinois	NELAC	5	200010	
estAmerica Nashville	Iowa	State Program	7	131	
estAmerica Nashville	Kansas	NELAC	7	E-10229	
estAmerica Nashville	Kentucky	State Program	4	90038	
estAmerica Nashville	Kentucky (UST)	State Program	4	19	
estAmerica Nashville	Louisiana	NELAC	6	30613	
estAmerica Nashville	Louisiana	NELAC	6	LA110014	
estAmerica Nashville	Maryland	State Program	3	316	
estAmerica Nashville	Massachusetts	State Program	1	M-TN032	
estAmerica Nashville	Minnesota	NELAC	5	047-999-345	
estAmerica Nashville	Mississippi	State Program	4	N/A	
estAmerica Nashville	Montana (UST)	State Program	8	NA	
estAmerica Nashville	New Hampshire	NELAC	1	2963	
estAmerica Nashville	New Jersey	NELAC	2	TN965	
estAmerica Nashville	New York	NELAC	2	11342	
estAmerica Nashville	North Carolina DENR	State Program	4	387	
estAmerica Nashville	North Dakota	State Program	8	R-146	
estAmerica Nashville	Ohio VAP	State Program	5	CL0033	
estAmerica Nashville	Oklahoma	State Program	6	9412	
estAmerica Nashville	Oregon	NELAC	10	TN200001	
estAmerica Nashville	Pennsylvania	NELAC	3	68-00585	
estAmerica Nashville	Rhode Island	State Program	1	LAO00268	
estAmerica Nashville	South Carolina	State Program	4	84009	
estAmerica Nashville	South Carolina	State Program	4	84009	
estAmerica Nashville	Tennessee	State Program	4	2008	
estAmerica Nashville	Texas	NELAC	6	T104704077-09-TX	
estAmerica Nashville	USDA	Federal		S-48469	
estAmerica Nashville	Utah	NELAC	8	TAN	
estAmerica Nashville	Virginia	NELAC	3	460152	
estAmerica Nashville	Virginia	State Program	3	00323	
estAmerica Nashville	Washington	State Program	10	C789	
estAmerica Nashville	West Virginia DEP	State Program	3	219	
estAmerica Nashville	Wisconsin	State Program	5	998020430	
estAmerica Nashville	Wyoming (UST)	A2LA	8	453.07	

Accreditation may not be offered or required for all methods and analytes reported in this package. Please contact your project manager for the laboratory's current list of certified methods and analytes.

1

ATTACHMENT A

	11070	DDOI	IC		NHE	TEC	T		
1. Generator's	HAZA	Manifest Doc N		2. Page 1		.52			
NON-HAZARDOUS MANIFEST				1					
3. Generator's Mailing Address:	Generator's Site Address (If different than mailing):			A. Manife	st Number	12.2		3	
	MCAS, BEAUFORT				WMNA 003168		6837		
LAUREL BAY HOUSING					B. State	Generator's	s ID		
BEAUFORT, SC 29907 4. Generator's Phone 843-228-6461				the second					
5. Transporter 1 Company Name	6. US	EPA ID Number	1		Children -	10055			
FEC INC					C. State Transporter's ID			at the part	
EEG, INC.	and the second			D. Transp	orter's Phone	843-	879-043	11	
7. Transporter 2 Company Name	8. US	8. US EPA ID Number							
	Ser Land			and the second second	ransporter's l orter's Phone	D	New -		
9. Designated Facility Name and Site Address	10. U	S EPA ID Number	- 1 · 1 ·	r. mansp	orter s rhone		REGE	the star	
HICKORY HILL LANDFILL					G. State Facility ID				
2621 LOW COUNTRY ROAD				H. State Facility Phone 843-98			987-464	7-4643	
RIDGELAND, SC 29936				1 Burger		T REAL	24-24	Card S	
	1	12. Con	ainers.	13. Total	14. Unit	1		105 IT	
11. Description of Waste Materials	C. P. C. S. C. S. C.	No.	Туре	Quantity	Wt./Vol.	I. N	Aisc. Comme	ints	
a. HEATING OIL TANKS FILLED WITH SAND				1 PA					
WM Profile # 1026555	c		PERMIT	100	Lave and	1	-		
b.				1			a state		
		ST ASSA				1 1 3			
WM Profile #			E 11 2 1	ALL STORY PR		1 the second	N.	AN IN	
c.		Ser Street		199	1 States	1 and			
WM Profile #		Contraction of the				-	1	Je -	
d.					1				
				- and	DE Y	1			
WM Profile #				123 22	1375				
J. Additional Descriptions for Materials Listed Above		K. Disposa	I Location	S. L. C	S LTS				
		Cell				Level	-		
		Grid		1944 - 194		Level		7973	
15. Special Handling Instructions and Additional Inform	584 Aster	e: 4)9	00 B	ARRAC	uda'	6)53'	That	RA	
1) 396 ACORN-2: 3)	1267 Dou	1E · 5)90	6 BA	RRACU	da'	2.614	il and	STI	
Purchase Order #	EMERGEN	CY CONTACT / PHO	NE NO.:	्रमा तथा	and states in	5 m 12	200		
16. GENERATOR'S CERTIFICATE:			1.254						
I hereby certify that the above-described materials are accurately described, classified and packaged and are in				and a second second		ave been tu	illy and		
Printed Name	Signature "O			2.25		Month	Day	Year	
(C, 0000 0, 0)		10	No 2	7		1.1	11	115	
17. Transporter 1 Acknowledgement of Receipt of Mat	Signature	01	11	1		Month	Day	Year	
PRATT SHAW	Signatore	PX1	N			7	11	12	
18. Transporter 2 Acknowledgement of Receipt of Mat	erials		0	12,210		The Party	100		
Printed Name	Signature	10 A				Month	Day	Year	
James Baldwin	Han	res Bal	du			7	11	12	
19. Certificate of Final Treatment/Disposal	Kernet and the second								
I certify, on behalf of the above listed treatment facility applicable laws, regulations, permits and licenses on th		knowledge, the abo	ve-describ	bed waste w	as managed i	n compliant	ce with al	1	
20. Facility Owner or Operator: Certification of receipt	of non-hazardous mate	rials covered by this	s manifest	•		and the	Sec. 12		
Printed Name	Signature	. 0	-1	00		Month	Day	Year	
White- TREATMENT, STORAGE, DISPOSAL FACILITY COF		ATOR #2 COPY	you	1 al	llow- GENERA	TOB #1 CO	PY	179	
THE THEATHER, STORAGE, DISPOSAL FACILITY CON	Dide- GENER	anon ne cor i	/	re	ou or		10/01		

Appendix C Regulatory Correspondence

Catherine B. Templeton, Director *Transacting and protecting the health of the multir and the environment*

May 15, 2014

Commanding Officer Attention: NREAO Mr. William A. Drawdy United State Marine Corps Air Station Post Office Box 55001 Beaufort, SC 29904-5001

RE: No Further Action Laurel Bay Underground Storage Tank Assessment Reports for: See attached sheet

Dear Mr. Drawdy,

The South Carolina Department of Health and Environmental Control (the Department) received the above referenced Underground Storage Tanks (USTs) Assessment Reports for the addresses listed above. The regulatory authority for the investigation and cleanup of releases from these tank systems is the South Carolina Pollution Control Act (S.C. Code Ann. §48-1-10 et seq., as amended).

The Department has reviewed the referenced assessment reports and agrees there is no indication of soil or groundwater contamination on these properties, and therefore no further investigation is required at this time.

Please note that the Department's decision is based on information provided by the Marine Corps Air Station (MCAS) to date. Any information found to be contradictory to this decision may require additional action. Furthermore, the Department retains the right to request further investigation if deemed necessary.

If you have any questions, please contact me at kriegkm@dhec.sc.gov or 803-898-0255.

Sincerely,

20m. They

Kent Krieg Department of Defense Corrective Action Section Bureau of Land and Waste Management South Carolina Department of Health and Environmental Control

Cc: Russell Berry (via email) Craig Ehde (via email)

Catherine B. Templeton, Director omosing and protecting the bratile of the public and the environment

Attachment to: Krieg to Drawdy Subject: NFA Dated 5/15/2014

Laurel Bay Underground Storage Tank Assessment Reports for: (143 addresses/146 tanks)

212 Balsam	503 Laurel Bay
219 Balsam	508 Laurel Bay
260 Beech Tank 1	510 Laurel Bay
260 Beech Tank 2	523 Laurel Bay
267 Birch	525 Laurel Bay
287 Birch	529 Laurel Bay
302 Ash	533 Laurel Bay
305 Ash	537 Laurel Bay
334 Ash	556 Dahlia
338 Ash Tank 1	557 Dahlia
338 Ash Tank 2	559 Dahlia
361 Aspen	562 Dahlia
371 Aspen	568 Dahlia
372 Aspen Tank 1	581 Aster
372 Aspen Tank 2	582 Aster
375 Aspen	584 Aster
385 Aspen	602 Dahlia
403 Elderberry	607 Dahlia
407 Elderberry	614 Dahlia
411 Elderberry	616 Dahlia
414 Elderberry	619 Dahlia
415 Elderberry	625 Dahlia
421 Elderberry	629 Dahlia
427 Elderberry	631 Dahlia
428 Elderberry	634 Dahlia
431 Elderberry	660 Camellia
455 Elderberry	661 Camellia
484 Laurel Bay	666 Camellia
490 Laurel Bay	669 Camellia
502 Laurel Bay	672 Camellia

Laurel Bay Underground Storage Tank Assessment Reports for: (143 addresses/146 tanks) cont.

674 Camellia	880 Cobia
677 Camellia	890 Cobia
679 Camellia	892 Cobia
686 Camellia	900 Barracuda
690 Camellia	906 Barracuda
698 Abelia	911 Barracuda
700 Bluebell	911 Barracuda 912 Barracuda
704 Bluebell	917 Barracuda
705 Bluebell	919 Barracuda
708 Bluebell	928 Albacore
710 Bluebell	1024 Foxglove
711 Bluebell	1028 Foxglove
714 Bluebell	1029 Foxglove
715 Bluebell	1038 Iris
726 Bluebell	1049 Gardenia
728 Bluebell	1079 Heather
731 Bluebell	1103 Iris
734 Bluebell	1122 Iris
759 Althea	1136 Iris
761 Althea	1173 Bobwhite
773 Althea	1200 Cardinal
778 Laurel Bay	1221 Cardinal
807 Azalea	1238 Dove
814 Azalea	1241 Dove
815 Azalea	1242 Dove
818 Azalea	1248 Dove
820 Azalea	1262 Dove
821 Azalea	1265 Dove
831 Azalea	1267 Dove
832 Azalea	1289 Eagle
834 Azalea	1298 Eagle
835 Azalea	1300 Eagle
841 Azalea	1303 Eagle
853 Dolphin	1304 Eagle
858 Dolphin	1315 Albatross
869 Cobia	1316 Albatross
874 Cobia	1320 Albatross
875 Cobia	1338 Albatross

Laurel Bay Underground Storage Tank Assessment Reports for: (143 addresses/146 tanks) cont.

1340 Albatross	
1342 Albatross	
1344 Cardinal	
1345 Cardinal	
1349 Cardinal	
1355 Cardinal	
1366 Cardinal	
1374 Dove	
1375 Dove	
1415 Albatross	